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Abstract

Image binarization algorithms in document image analysis divide pixel values

into two groups, including white as background and black as foreground.

Among others, the local contrast and mean (LCM)-based thresholding algo-

rithm offers excellent performance in processing degraded documents. This

algorithm, however, is susceptible to noise and requires significant hardware

resources. In this paper, an energy-efficient and fault-tolerant architecture is

proposed for implementing the LCM algorithm in stochastic computing (SC).

Leveraging correlated input bitstreams, this architecture saves energy and

improves the fault tolerance of the implementation. Experimental results show

that the proposed LCM stochastic architecture significantly outperforms the

stochastic implementation of the Sauvola algorithm in terms of both

binarization accuracy and hardware overhead and energy consumption. Even

using 16-bit streams, the proposed circuit produces an error rate lower than

5%. The stochastic implementation of the LCM algorithm using a 16-bit length

FSM-based LD sequence is 22 times less in area, 26 times less in total power,

28 times less in energy consumption and more fault-tolerant than the conven-

tional 8-bit bit-width weighted binary with the same frequency constraints.
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1 | INTRODUCTION

Document image binarization is performed during the preprocessing stage of document analysis to segment foreground
text from the background. Therefore, a fast and accurate image binarization algorithm is essential for document image
processing. Binarization is the process of converting a grayscale image into only two types of pixels, white as back-
ground and black as foreground.1 Binarization algorithms can be divided into two categories, including global and local
binarization methods. Global methods attempt to find a threshold for the entire document, such as Otsu.2 For high-
quality document images, the global threshold can effectively extract text rapidly. However, it is not suitable for
processing complex or degraded documents. If the illumination on a document is not uniform, global binarization
methods tend to produce edge noises along its boundaries. To overcome such complexities, local thresholding methods
have been proposed for image binarization. These algorithms estimate a threshold for each pixel based on its neighbor-
ing information, such as Sauvola.3 Local methods can produce acceptable results even for heavily degraded documents,
although they are usually slow in processing speed compared with the global ones.
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A thresholding algorithm typically depends on a local window size that determines the processing time and com-
puted results. Using the local contrast and mean (LCM), such a method provides excellent results for a large character
size even at a small window size.[4] With nanoscale CMOS devices, it is expected that circuits to implement these algo-
rithms are more sensitive to environmental noise, process, voltage, and thermal variations.5 In conventional weighted
binary circuit design, fault-tolerant techniques, such as triple modular redundancy, can improve the reliability of the
implementation of these algorithms. However, it consumes more hardware and thus more energy, which limits the
advantages of these algorithms.

In this paper, an architecture for implementing the LCM algorithm in SC is proposed that leverages the capabilities
of SC in reducing circuit complexity and tolerating soft errors, compared with the weighted binary method. The main
advantages of the proposed stochastic architecture are summarized as follows:

1. The problem of parameter selection for the stochastic implementation of the LCM algorithm is elaborated in detail,
whereas it is not specifically described in Najafi and Salehi.6 Meanwhile, the proposed stochastic comparator is more
energy efficient than in Najafi and Salehi.6

2. It produces an acceptable error rate of lower than 5% even when 16-bit streams are used, saving energy and speeding
up the processing by exploiting correlated bitstreams.

3. The proposed LCM algorithm stochastic architecture has a smaller area, lower power, and energy consumption and
higher fault tolerance than the conventional weighted binary design when using streams lower than 128 bits.

This paper proceeds as follows. Section 2 introduces the concepts of the LCM algorithm and SC. Section 3 presents the
parameter selection of the stochastic implementation of the LCM algorithm, the conventional weighted binary imple-
mentation, and the proposed stochastic architecture. Section 4 illustrates experimental results. Section 5 concludes this
paper.

2 | BACKGROUND

2.1 | LCM-based thresholding algorithm

The binarization algorithm proposed in Singh and Sinam4 is performed by a local threshold obtained from LCM values.
The threshold T(x,y) is given by

T x,yð Þ¼ k� m x,yð Þþ Imax� Iminð Þ 1� I x,yð Þð Þ½ �, ð1Þ

where k�[0,1] is a bias constant, m(x, y) is the local mean pixel value, Imax and Imin are the local maximum and mini-
mum pixel values within a local window size of W � W, and I(x,y) is a center pixel value.

The main function of the bias constant k is to control the degree of binarization by varying the threshold value. The
larger the value of k is, the larger the threshold value is, and thus a larger number of foreground pixel points will be
obtained. If the pixel values in a local window only slightly fluctuate, that is, ImaxI-min ≈ 0, then T(x,y) ≈ k � m(x,y).
Therefore, the threshold T depends on the value of the bias constant k.

2.2 | Stochastic computing

SC is an unconventional method of computation that treats data as probabilities, which are encoded as random binary
bitstreams.7 Compared with deterministic weighted binary techniques, SC has the advantage of reducing hardware
overhead and enhancing fault tolerance. Thus, it has been widely investigated for computation-intensive applications,
such as image processing.8 Stochastic bitstreams are often referred to as stochastic numbers (SNs) and typically use
either unipolar or bipolar encodings. Under the same bitstream length, the accuracy of the unipolar format is twice that
of a bipolar one,7 so the unipolar representation is utilized in this paper.

Some basic arithmetic operations in SC can be simply implemented with combinatorial logic. For example, scaled
addition can be implemented by an MUX (Figure 1A), an AND gate (Figure 1E) can realize multiplication, and a NOT
gate (Figure 1F) can implement the function of an inverter. Managing and manipulating the correlation between SNs
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in SC is critical for generating accurate results.9 If two input SNs X and Y are maximally positively correlated, OR gates
(Figure 1B) and AND gates (Figure 1C) can, respectively, be used to implement max/min functions, and an XOR gate
(Figure 1D) performs the subtraction. SC uses a digital-to-stochastic (D/S) converter (Figure 1G) to convert a given
binary number B�[0, N] to a stochastic bitstream. The converter generates a random integer value R�[0, N] by a ran-
dom number generator (RNG). The value R is compared with B to generate an N-bit SN Z with PZ = B/N. To convert
an SN back to its binary encoded format, a stochastic-to-digital (S/D) converter (Figure 1H) is used, which consists of a
counter that sums up each bit in the SN. The conversion circuits can consume up to 80% of the total area in an SC cir-
cuit.10 Therefore, this paper considers the use of the shared RNG to reduce the hardware cost of the stochastic circuit
without compromising its accuracy.

3 | IMPLEMENTATIONS OF THE LCM ALGORITHM

3.1 | Thresholding algorithm parameters

Considering (1), the performance of the LCM algorithm depends on two parameters: (1) a bias constant k and (2) a
selected window size W � W. Assuming that the value of k takes 1, the maximum value of Equation 1 is 2. To imple-
ment this algorithm by leveraging SC, all image pixel values have to be scaled down from [0,255] to [0,1]. Therefore,
the range of k �[0,0.5]. Assuming that the selected window size is 5 � 5, the images are binarized with
k = 0.1,0.2,0.3,0.4,0.5, and the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR) are used as accuracy
evaluation to select the appropriate values of k. The PSNR is given as11

PSNR¼ 20log MAXIð Þ�10log MSEð Þ, ð2Þ

where MAXI is defined as the max intensity value. Figure 2 shows the binarization effect of the LCM algorithm for dif-
ferent values of k. Based on our experiments on several image datasets, Figure 2B was selected as the benchmark image
for binarization. Table 1 shows the MAE and PSNR of image binarization for different values of k. It can be seen that
the MAE is the lowest and the PSNR is the maximum when k = 0.5. This means that the larger the value of k, the larger
the threshold value. The larger the threshold, the more foreground pixels are obtained, so k being defined as 0.5 is an
appropriate value.

FIGURE 1 SC elements. (A) Addition. (B) Max. (C) Min. (D) Subtract. (E) Multiply. (f) Inverse. (G) D/S convert. (H) S/D convert

FIGURE 2 The binarization effect of LCM algorithm for different values of k. (A) Original degraded document image. (B) The

binarization benchmark image. (C) k = 0.1. (D) k = 0.2. (E) k = 0.3. (F) k = 0.4. (G) k = 0.5
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The quality of binary images processed by the LCM algorithm also depends on the selected window size, while an
oversized window would not significantly improve the quality, even at the cost of additional hardware resources.4 To
verify the effect of window size on the quality of binarized images and determine a suitable size, we compare the LCM
algorithm under the deterministic weighted binary technique with the Sauvola algorithm in Najafi and Salehi.6

Figure 2A shows the original degraded document image. Figure 3A–C and Figure 3D–F are, respectively, the images
processed using Sauvola and LCM algorithms with 3 � 3, 5 � 5, and 7 � 7 window size. It can be seen that the LCM
algorithm produces a better-binarized image than the Sauvola algorithm. For example, when the window size is 3 � 3,
the binarized image using the Sauvola algorithm is unclear and many foreground pixels are missing.

Table 2 shows the PSNR of LCM and Sauvola algorithms for the binarization of images with different window sizes.
It can be seen that the PSNR of the LCM algorithm is higher than that of the Sauvola algorithm, regardless of the win-
dow size. And when the window size is 5 � 5, the PSNR of the LCM algorithm is the highest. Meanwhile, we also count
the background pixels of the images processed by different window sizes in Figure 4. Compared with the image
processed by the LCM algorithm at a 13 � 13 window size, the average error of the image processed at a 5 � 5 window
size is only 1.8%, which is acceptable for an error lower than 2%.12 In summary, to balance the hardware overhead and
time consumption, a window size of 5 � 5 is chosen in this paper.

3.2 | Conventional implementation

The key to the LCM algorithm is to calculate the threshold T(x,y) for each pixel in an image, which involves finding the
maximum, minimum, and mean of the pixel values in a local window. For a window size of 5 � 5, we need to calculate
them in this window using 25-pixel values, denoted as z1, z2, …, z25. The mean of these pixel values in the 5 � 5 window
is then

mean¼ z1þ z2þ z3þ���þ z24þ z25
25

: ð3Þ

TABLE 1 The MAE(%) and PSNR (dB) of image binarization at different values of k

k 0.1 0.2 0.3 0.4 0.5

MAE 1.90 � 10�1 1.06 � 10�1 6.44 � 10�2 3.62 � 10�2 1.29 � 10�2

PSNR 7.21 9.76 11.91 14.41 18.88

F IGURE 3 (A) 3 � 3. (B) 5 � 5, and (C) 7 � 7 window size using the Sauvola algorithm. (D) 3 � 3, (E) 5 � 5, and (F) 7 � 7 window

size using LCM algorithm

TABLE 2 The PSNR (dB) of LCM and Sauvola algorithms for binarization of images with different window sizes

Window size 3 � 3 5 � 5 7 � 7 9 � 9 11 � 11 13 � 13

LCM algorithm 14.10 18.88 18.76 18.34 17.27 16.04

Sauvola algorithm 7.07 9.19 10.61 11.06 11.37 11.67
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A five-stage MAX tree is used to find the maximum among 25-pixel values, in which each MAX module evaluates two
neighboring values to output a larger one for the next stage until it is found. The critical path delay of the circuit
designed in this way is shorter than a simple sequential comparison. The minimum pixel value is found similarly.
Figure 5 shows a schematic for the conventional implementation of the LCM algorithm.

3.3 | Stochastic implementation

From the analysis in Section 3.1, a new modified threshold T(x,y) in the LCM algorithm is proposed as

T x,yð Þ¼ 0:5� m x,yð Þþ Imax-Iminð Þ 1� I x,yð Þð Þ½ �: ð4Þ

FIGURE 4 Background pixel value statistics for the binarized images using different window sizes [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 5 Conventional implementation of the LCM algorithm
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Implementing (3) requires three steps: (1) converting the pixel values of an image into stochastic bitstreams; (2) generat-
ing a threshold bitstream by a stochastic circuit; and (3) determining the output binary values.

1. Converting pixel values into stochastic bitstreams: The D/S converter in Lee et al9 is used to convert pixel values to sto-
chastic bitstreams. An RNG usually uses logic circuits such as linear feedback shift registers (LFSRs) instead of true
random sources. Its output is repeatable, but it has many characteristics of a truly random number. In recent years,
some low-discrepancy (LD) sequences, such as Halton13 and Sobol14 sequences, have been proposed to improve the
accuracy of the circuits. In terms of hardware overhead, the generation of Halton sequences requires the use of
counters with different base-b when several independent sequences are required, where b is a prime number. The
generation of the Halton sequence must be base converted, which imposes additional hardware overhead on the sto-
chastic circuit. In addition, the hardware overhead of the Sobol is also significant.14 To solve the issue of costly LD
bit-stream generators, a low-cost FSM-based LD bit-stream generator is proposed for SC designs that require multi-
ple independent bitstreams.15 In this paper, the LFSR and FSM-based LD bitstream generators are used as RNGs to
generate stochastic bitstreams. Note that for the input of the MUX, the D/S converter shares an RNG to generate all
the required stochastic bitstreams, and the selection signal of the MUX uses the separate RNG to generate the sto-
chastic bit-streams.

2. Generating threshold bitstreams: First, an averaging operation should be taken for 25 input bitstreams in a 5 � 5 win-
dow. For this purpose, a 5-to-1 stochastic mean circuit (SMC) is proposed by using an 8-1 MUX as shown in
Figure 6A, and Figure 6B shows its symbol. The fifth input bit-stream z5 is copied three times to connect to its last
three inputs, and bitstreams z1, z2, z3, z4 are connected to its first four inputs in order. The most significant bit S3 of
the MUX is connected to a bitstream encoding 0.2, and the remaining bits are connected to bitstreams encoding 0.5.
The toggle flip-flop (TFF) is an interesting element in SC, where the output has a probability of 1/2, independent of
the probability of its inputs, as long as the inputs are not zero.16 Thus, the output bitstream of the MUX is the aver-
age of five input bitstreams. This has the advantage that the area cost of the TFF is no more than the RNG required
to generate 1/2. Then, by combining five separate 5-to-1 SMCs and averaging their outputs by using an additional
5-to-1 SMC, the final bitstream obtained is exactly the average of 25 input bitstreams, as shown in Figure 6C, and
Figure 6D shows its symbol.

The accuracy of the proposed 5-to-1 and 25-to-1 SMCs are evaluated. Absolute error (AE) and mean square error
(MSE) are used as metrics to quantify the accuracy. We use the rand function to select 5 and 25 numbers and then per-
form 1000 Monte Carlo simulations. Figure 7A,B shows the AE of the 5-to-1 and 25-to-1 SMCs, respectively. The length
of the stochastic bitstreams is assumed to be 1024 bits. It can be seen that the AE of the proposed 5-to-1 SMC mostly
concentrates below 0.05 accounting for about 96.5%, while that of 25-to-1 SMC concentrates below 0.04 accounting for
about 97.3%. Table 3 shows the MSE of the proposed SMC for different stochastic bitstream lengths.

FIGURE 6 The proposed stochastic mean circuit. (A) 5-to-1 SMC schematic. (B) 5-to-1 SMC symbol. (C) 25-to-1 SMC schematic.

(D) 25-to-1 SMC symbol
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Second, the maximum and minimum bit-streams are generated among 25 input bitstreams. A stochastic max/min
function circuit based on shift registers is proposed in Lunglmayr et al,17 while the circuit requires a long shift register
and its accuracy depends on the length of the bitstreams. To exactly obtain the maximum Imax and minimum Imin,
OR/AND gates can be utilized by exerting maximally positively correlated input bitstreams.9 To obtain the local con-
trast, it is also necessary to calculate the difference Imax � Imin between the Imax bitstream and the Imin bitstream.
Because they are maximally correlated, an XOR gate can perform the subtraction on two bitstreams, resulting in high
accuracy and low hardware consumption.

Lastly, several simple operations need to be designed for completing (3). A NOT gate can perform 1 � I(x,y), where I
(x,y) = z13. Then an AND gate performs the multiplication of (Imax � Imin)(1 � I(x,y)). Because the multiplication real-
ized using an AND gate requires its input bitstreams to be independent of each other, an isolation method for decor-
relating them is proposed by inserting D flip-flops (DFFs) following the XOR gate. This isolation method also incurs
very low hardware cost and low latency, compared with regeneration.18 The threshold bit-stream T(x,y) is calculated by
using a scaled addition circuit.19 Figure 8 shows the proposed stochastic implementation of the LCM algorithm, where
“3D” means the delay of three clock cycles to reduce the correlation between input bitstreams.

FIGURE 7 The absolute error of the proposed SMC. (A) The AE of 5-to-1 SMC. (B) The AE of 25-to-1 SMC [Colour figure can be

viewed at wileyonlinelibrary.com]

TABLE 3 The MSE of SMC with different stochastic bitstream lengths

Bitstream lengths (bit) 64 128 256 512 1024

5-to-1 SMC 6.00 � 10�3 3.00 � 10�3 2.30 � 10�3 1.20 � 10�3 4.89 � 10�4

25-to-1 SMC 3.90 � 10�3 2.00 � 10�3 1.10 � 10�3 5.91 � 10�4 2.43 � 10�4

FIGURE 8 The proposed stochastic implementation of the LCM algorithm
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3. Determining the binary output values: This binary value is generated by comparing the produced threshold bit-stream
with the pixel bitstream, as

b x,yð Þ¼ 0, if I x,yð Þ≤T x,yð Þ
1, otherwise

�
, ð5Þ

where b(x,y) is the binarized value and I(x,y) is the pixel value at location (x,y) in an image. A stochastic comparator is
responsible for this part of the proposed circuit.

A stochastic comparator based on a stochastic tanh function and scaled subtraction is proposed in Li et al.8 How-
ever, this comparator can only generate ideal results when both input bitstreams are in the bipolar format and their dif-
ference is greater than 0.2. To make it simpler and more accurate, a new type of stochastic comparator based on a
simple counter is proposed in Najafi and Salehi.6 This comparator can work in the unipolar format, and its results are
also accurate for almost equal input bitstreams. However, this comparator processes bitstream B after bitstream A is
processed, which causes a relatively large delay. An improved stochastic comparator is proposed, as shown in Figure 9.
This comparator uses two N-bit counters to count the number of 1 s in bitstream A and bitstream B at the same time.
After that, its output is a 1 if the value of A is greater than the value of B; otherwise, it is a 0. The energy per operation
(EPO) is used in Liu and Han14 to quantify the performance of the circuit. The EPO is given as

EPO¼Power�Tclk�L, ð6Þ

where L is the sequence length, Tclk is the clock period, and Power is the measured power at Tclk. The kernel hardware
resources of the stochastic comparator proposed in Najafi and Salehi6 and the one proposed in this paper are then com-
pared. These two comparators were synthesized using Synopsys Design Compiler with the 40-nm technology library at
100 MHz. The efficiency of the hardware implementation is measured by EPO and runtime. Let N = 2k be the length of
the bitstreams. The results are shown in Figure 10A–D. It can be seen that although the area and power consumption
of the proposed stochastic comparator are higher than those proposed in Najafi and Salehi,6 the proposed circuit has
significant advantages in terms of running time and energy efficiency.

4 | EXPERIMENTAL RESULTS

The experimental results of the conventional and the proposed stochastic implementations of the LCM algorithm are
verified by using MATLAB and the Verilog HDL languages. The accuracy of a stochastic implementation is determined
by the length of its bit-streams used. However, a longer bitstream means that the system consumes higher energy. To
evaluate the trade-off between accuracy, hardware cost, and runtime, stochastic circuits with various bitstream lengths
(16, 32, 64, 128, and 256) are considered. After being successfully verified on FPGAs, these circuits are then synthesized
using the Synopsys Design Compiler NXT R-2020.09-SP5 version with TSMC's 40-nm library, under 100 MHz fre-
quency. The power consumption is measured using Synopsys PrimePower O-2018.06-SP3 version, vector-free power
analysis mode. The operating conditions for each implementation are defined by a supply voltage of 1.10 V and a tem-
perature of 25�Celsius. A grayscale degraded document image (Figure 2A) is selected and different implementations are
compared, in terms of the hardware cost, energy consumption, and fault tolerance.

FIGURE 9 The proposed stochastic comparator
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4.1 | Simulation results

Figures 11 and 12 show the simulation results of the LCM algorithm and the stochastic implementation of the Sauvola
algorithm in Najafi and Salehi6 for different bitstream lengths using LFSR sequences. It can be seen that the quality of
the stochastic implementation of the LCM algorithm is significantly better than that of the Sauvola algorithm when
using bitstream lengths lower than 128 bits. For example, when using 16-bit streams, the binarized image processed by
the Sauvola algorithm is full of noise, while the LCM algorithm processes it with better quality. Table 4 shows the MAE
and PSNR of the stochastic LCM algorithm circuit with LFSR and FSM-based LD bitstream, respectively, compared
with the conventional implementation. It can be seen that the stochastic circuit with 256-bit streams using LFSR
sequences produces almost identical results as those produced by the conventional one, with an error rate of 0.52%.
Because an MAE of below 5% is acceptable in many digital image processing algorithms,20 the stochastic implementa-
tion of the LFSR sequence using a 16-bit stream is sufficient for the LCM algorithm, which comes with an error rate of

FIGURE 10 Circuit performance comparison. (A) Area comparison. (B) Power comparison. (C) Runtime comparison. (D) EPO

comparison [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Simulation results of the stochastic implementation of the LCM algorithm using LFSR sequences. (A) Stochastic 256.

(B) Stochastic 128. (C) Stochastic 64. (D) Stochastic 32. (E) Stochastic 16

FIGURE 12 Simulation results of the stochastic implementation of the Sauvola algorithm using LFSR sequences in Najafi and Salehi.[6]

(A) Stochastic 256. (B) Stochastic 128. (C) Stochastic 64. (D) Stochastic 32. (E) Stochastic 16
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2.14%. However, using an FSM-based LD bit-stream results in a lower MAE and higher PSNR for the stochastic circuit
because the random fluctuations of the pseudo-random bitstream are eliminated. Meanwhile, the accuracy based on
the conventional implementation of 8-bit data bit-width is quantized. As can be seen in Table 4, the MAE of the image
binarization circuit becomes higher and the PSNR is considerably lower when being quantized to 6 or 4 bits.

4.2 | Circuit performance comparison

Tables 5 and 6 show the circuit performance comparison of conventional and stochastic implementations of LCM and
Sauvola algorithms for different bit-stream lengths, respectively. Regardless of the binarization algorithm, the stochastic

TABLE 4 The MAE(%) and PSNR (dB) of the stochastic LCM algorithm circuit compared with the conventional implementation

Conventional Precision 8-bit 7-bit 6-bit 5-bit 4-bit

MAE 0 2.00 3.55 4.25 4.45

PSNR 18.88 16.14 14.04 13.34 13.13

SC Bitstream length 256-bit 128-bit 64-bit 32-bit 16-bit

LFSR MAE 0.52 0.63 0.90 1.27 2.14

PSNR 18.32 17.99 17.42 16.71 15.49

FSM-based LD MAE 0.43 0.48 0.56 0.76 1.54

PSNR 18.61 18.53 18.05 17.83 15.91

TABLE 5 Circuit performance comparison of conventional and stochastic implementations of the LCM algorithm

Method Precision Area (um 2) Power (uW) CPD (ns) Latency (ns) PLP (pJ)

Conventional 8-bit 3954.71 369.59 6.82 6.82 2.52

6-bit 2939.18 273.51 5.86 5.86 1.60

4-bit 1038.29 168.28 3.95 3.95 0.66

SC LFSR 256-bit 352.62 30.20 0.63 161.28 4.87

128-bit 308.17 27.09 0.60 75.52 2.05

64-bit 272.71 23.87 0.56 35.84 0.85

32-bit 236.55 20.69 0.52 16.64 0.34

16-bit 197.74 17.01 0.49 7.84 0.13

FSM-based LD 256-bit 310.99 22.64 0.65 166.40 3.76

128-bit 279.59 20.57 0.62 79.36 1.63

64-bit 237.25 18.36 0.48 30.72 0.56

32-bit 211.50 16.20 0.46 14.72 0.24

16-bit 179.04 14.11 0.38 6.08 0.09

TABLE 6 Circuit performance comparison of conventional and stochastic implementations of the Sauvola algorithm

Method Precision Area (um 2) Power (uW) CPD (ns) Latency (ns) PLP (pJ)

Conventional 8-bit 23607.79 2686.50 8.47 8.47 22.75

SC 256-bit 845.13 51.73 2.10 537.60 27.81

128-bit 760.98 46.90 1.99 254.72 11.95

64-bit 669.97 42.11 1.77 113.28 4.77

32-bit 588.12 36.80 1.59 50.88 1.87

16-bit 494.45 31.72 1.27 20.32 0.64

10 XU ET AL.



implementation has a much lower hardware overhead than the conventional ones, which is an advantage of stochastic
computing even if the accuracy of the conventional implementation is quantized. For example, the stochastic circuit using
LFSR sequences with a length of 256 bits performs up to 11 � improvement compared with the area of a conventional cir-
cuit implementing the LCM algorithm with an 8-bit data bit-width. It also reaches approximately 12 � improvement in
terms of total power. The hardware overhead is still higher than a stochastic implementation when quantizing the con-
ventional 8-bit data bit-width precision to 4 bits. As can be seen in Table 5, the hardware overhead of using FSM-based
LD sequences is lower than that of using LFSR sequences. For example, the FSM-based LD sequence reduces the stochas-
tic implementation by 9.3% and the total power consumption by 24% compared with the LFSR-based sequence when the
bit-stream length is 128 bits. Meanwhile, Table 6 shows that the hardware overhead of implementing the Sauvola algo-
rithm using LFSR sequences is much higher than that of the LCM algorithm. Note that in this performance comparison,
the total area in the proposed stochastic circuits includes all the D/S and S/D converters.

4.3 | Energy consumption comparison

Although a stochastic circuit is smaller, it may consume more energy because of the long bit-streams. If using a length
of an L-bit stream to encode a pixel value, the stochastic circuit will be L times slower than its conventional one at the
same operating frequency.8 The power–latency product (PLP) is then used to evaluate the energy consumption, as in

PLP¼Power�Latency: ð7Þ

The circuit latency of various implementations of the LCM algorithm is shown in Table 5. Note that the “Latency”
refers to the product of the critical path delay (CPD) of a circuit and its bitstream length L. The stochastic implementa-
tion using the LFSR sequence consumes less energy than the conventional one when L ≤ 128, regardless of whether
the conventional 8-bit bit-width implementation quantizes to 6 or 4 bits, the same is true using FSM-based LD
sequences. However, a stochastic implementation using FSM-based LD sequences will consume less energy than using
LFSR sequences. For example, a conventional implementation with a 4-bit width consumes about seven times more
energy than a stochastic circuit using an FSM-based LD sequence of length 16 bits. As can be seen in Table 6, a hard-
ware implementation of the LCM algorithm would be more energy efficient. For example, a stochastic implementation
of the Sauvola algorithm using LFSR sequences consumes approximately six times more energy than an LCM algorithm
using LFSR sequences when using 128-bit streams.

4.4 | Fault-tolerance comparison

Similar to the method used in Qian et al,10 various fault rates are injected into the aforementioned circuits. That is, it is
simulated by independently flipping a given percentage of bits in the input bitstreams in a circuit. For example, a soft

FIGURE 13 The images processed by using conventional and the proposed stochastic implementations for the LCM algorithm versus

injecting fault rate
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error rate of 8% means that 8% of the total number of bits is randomly chosen and flipped. Figure 13 shows the images
processed by the conventional and various stochastic implementations of the LCM algorithm versus various inject fault
errors using the FSM-based LD sequence. The average output error is then measured. If the height and width of the
image are defined as H and W, the average output error E is given by

E¼

PH
i¼1

PW
j¼1

jTi,j�Si,j j

255 �H �W �100%, ð8Þ

where Si,j is an output image pixel processed by the conventional circuit without any injected noise and Ti,j is an output
image pixel processed by a circuit with injected noise. Figure 14 shows the average output error versus inject fault rate
for the conventional and the proposed stochastic implementations of the LCM algorithm. When the injection noise rate
is larger than 1%, the stochastic circuit has higher fault tolerance than the conventional one except for the one using
16-bit streams. When the injection noise rate is larger than 2%, even the stochastic circuit using 16-bit streams outper-
forms the conventional one.

5 | CONCLUSION

In this paper, an energy-efficient and fault-tolerant stochastic computing architecture are proposed for
implementing the LCM algorithm to binarize degraded document images. To implement this algorithm, a novel sto-
chastic comparator and mean circuit are proposed by employing the correlation between bit-streams to calculate the
maximum and minimum pixel values. By balancing the runtime and accuracy of binarized results, an acceptable
window size of 5 � 5 is chosen. Experimental results show that the stochastic implementation of the LCM algorithm
using FSM-based LD sequences significantly outperforms the conventional implementation in terms of hardware
overhead, energy consumption, and fault tolerance. Meanwhile, the proposed LCM algorithm stochastic architec-
ture is significantly better than the Sauvola algorithm in terms of binarization accuracy, hardware overhead, and
energy consumption.
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